Tech Note

Pandas Performance Optimization Tips

Essential optimization techniques for faster data processing with pandas DataFrame operations.

AN
Alexander Nykolaiszyn
5 min read read Beginner
pandas performance python data-processing

Pandas Performance Optimization Tips

Working with large datasets in pandas can be challenging when performance becomes a bottleneck. Here are essential optimization techniques that can dramatically improve your data processing speed.

1. Use Vectorized Operations

Instead of iterating through DataFrame rows, leverage pandas’ vectorized operations:

# Slow - iterating through rows
for index, row in df.iterrows():
    df.at[index, 'new_col'] = row['col1'] * row['col2']

# Fast - vectorized operation
df['new_col'] = df['col1'] * df['col2']

2. Optimize Data Types

Choose appropriate data types to reduce memory usage:

# Check memory usage
print(df.memory_usage(deep=True))

# Optimize numeric types
df['int_col'] = df['int_col'].astype('int32')  # instead of int64
df['float_col'] = df['float_col'].astype('float32')  # instead of float64

# Use categories for strings with few unique values
df['category_col'] = df['category_col'].astype('category')

3. Use query() for Filtering

The query() method can be faster than boolean indexing:

# Standard filtering
result = df[(df['col1'] > 100) & (df['col2'] == 'value')]

# Faster with query
result = df.query('col1 > 100 and col2 == "value"')

4. Leverage eval() for Complex Expressions

For complex mathematical operations, eval() can provide significant speedups:

# Standard approach
df['result'] = df['a'] + df['b'] * df['c'] - df['d']

# Faster with eval
df['result'] = df.eval('a + b * c - d')

5. Read Data Efficiently

Optimize data reading with appropriate parameters:

# Specify data types upfront
dtypes = {'col1': 'int32', 'col2': 'float32', 'col3': 'category'}
df = pd.read_csv('file.csv', dtype=dtypes)

# Use chunksize for large files
chunk_size = 10000
for chunk in pd.read_csv('large_file.csv', chunksize=chunk_size):
    process_chunk(chunk)

These techniques can provide 2-10x performance improvements depending on your use case. Always profile your code to identify the actual bottlenecks in your specific workflow.

AN

Alexander Nykolaiszyn

Manager Business Insights at Lennar | Host of Trailblazer Analytics Podcast | 15+ years transforming raw data into strategic business value through BI, automation, and AI integrations.

β˜• Tip